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Outline

q What drives combustion?

q Temperature dependency of chemical kinetic pathways (aka low T 
chemistry)

q Chemical kinetic model reduction and stiffness removal

q Extension to CFD: is detailed chemistry always the answer?
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What drives combustion?
It is the radicals, stupid!
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What drives reaction progress in combustion?
Reaction progress driven mostly by radicals

q The electronic configuration of an atom determines its valence, that is, the 
number of electrons in the outermost shell (highest energy levels) able to 
form bonds.

q A radical is formed when one of the valence electrons is not paired.

q Radicals are highly reactive and tend to react with other species to reach 
the more stable paired-electron configuration
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Radicals drive reaction progress in combustion

Radical balance is the most important aspect

q 4 types of reactions:
q Initiation reactions – Stable molecules creating radicals

What are the initiation reactions in the heptane/air case from part I?
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Radicals drive reaction progress in combustion

Radical balance is the most important aspect

q 4 types of reactions:
q Initiation reactions – Stable molecules creating radicals

q Chain-branching reactions – more radicals in reactants than in products
Example

q Chain-Propagating reactions – Same number of radicals on both sides
Example

q Chain-breaking/terminating reactions – Fewer radicals in reactants than in 
products
Example
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Radicals drive reaction progress in combustion

q Most important radicals for combustion:

and in specific conditions, 

q  O is different from the others:

q They play similar roles in the kinetics due to fast shuffling reactions
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O +H2 � OH +H

OH +H2 � H2O +H

OH +OH � H2O +O
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Radicals drive reaction progress in combustion

q Most important chain-branching reaction

q Very significant reaction for chain-breaking:
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Chemical kinetics pathways are strong 
function of the temperature

Quick overview of low temperature chemistry
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Application: Internal combustion engines
q 4-stroke engine is by far the most common engine used in car and trucks
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Spark-ignition
(gasoline)

Compression-ignition
(diesel)

• Pre-vaporized fuel 
and air during intake

• Timing of combustion 
through spark

• Premixed flame 
propagation

• Only air during intake
• Timing of combustion 

through fuel injection
• Autoignition and 

mixed mode of 
combustion

Low emissions High emissions



Application: Internal combustion engines
q Thermal efficiency related to compression ratio

q Typical compression ratios:

q What happens if you put gasoline into a pure ethanol engine (both SI)?

q Vaporization is not the same, issue with cold start

q Global reaction VERY different, you would be 
injecting way too much gasoline and burning 
very rich

q Flame speeds not the same: ignition time advance
(when spark plug goes off) would be off

q Spark plugs, oxygen sensors, catalytic converters 
would be in trouble

q Octane number is very different: high risk of knocking!
Fuel/air mixture auto-ignites before flame gets to it, creating 
undesirable pressure peaks
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Ignition delay time and its temperature dependency
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Temperature profile for heptane/air 



Heptane auto-ignition at high temperature
q Initiation reactions

q As soon as there is some H in the system, favorite chain-branching reaction starts cranking 
radicals 

q Fuel radicals are short-lived: most favored reaction involves breaking the chain into small 
pieces

q Once the HC fragments are small enough, oxidation starts, creating C-O bonds, removing 
hydrogen

q At the end, CO is fully oxidized to CO2 nearly exclusively  through
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At high temperature, fuel quickly breaks down to small fragments and C-O bonds are 
formed on C1-C2 species 
• Most fuels behave the same
• Very good understanding of the chemistry and associated rates



Heptane auto-ignition at low-temperature
q Initiation starts the same. However, unimolecular breakdown of the 

fuel molecule is not favored anymore: fuel radical is long-lived 

14Zador, Taatjes & Fernandes, adapted by Green



Heptane auto-ignition at low-temperature
q Temperature profile is quite specific
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Heptane auto-ignition at low-temperature

16Zador, Taatjes & Fernandes, adapted by Green

q The actual chemistry is much 
more complicated, with many 
potential side channels

q Key challenge: 

Overall, reasonably well 
understood



Heptane auto-ignition at medium temperatures

q In an intermediate range of temperature, there is a kinetically favored kinetic 
pathway that is

q More efficient at igniting than the high temperature pathway (unimolecular 
decompositions need lots of energy to proceed) 

q Less efficient at igniting than the low temperature pathway (OH is getting 
replaced by some other radical)
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Heptane auto-ignition at medium temperatures

q At medium T, the fuel radical is very slow at breaking down

q O2 has its chance! But when R and O2 combine, they do not result in  RO2

q In addition, our favorite chain branching reaction gets side lined

q HO2 still creates a chain-branching cycle

18Reproduced from W. Green, MIT

Moderately well 
understood, less so 

than the other regimes 



When detailed chemistry is too detailed

Sometimes it is…
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Numerical simulations

q What we want: couple kinetics info with real-world combustion, which is 
virtually always turbulent

q What we can do with detailed chemistry given the number of variables: a few 
simple laminar configurations

q Homogeneous systems (no transport terms)
q Isochoric adiabatic reactor
q Isobaric adiabatic reactor

q One-dimensional systems
q Freely propagating laminar flame
q Burner stabilized laminar flame
q Counterflow diffusion flame

q Idealized reactors 
q Partially stirred reactor: homogeneous at the macro level, 

heterogeneous at the micro level to mimic molecular diffusions when 
testing kinetic models

20Far cry from actual turbulent configurations!



Numerical simulations
q Number of variables limit detailed numerical solutions to a few simple 

laminar configurations
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Isochoric adiabatic reactor
} Governing Equations

} Type of information
◦  Ignition delay time

} Experimental configurations
◦ Shock tube
◦ rapid compression machines

n-heptane/air
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Numerical simulations
q Number of variables limit detailed numerical solutions to a few simple 

laminar configurations
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Isobaric adiabatic reactor
} Governing Equations

} Type of information
◦  species concentrations

} Experimental configurations
◦ Plug Flow Reactor (PFR)
◦ Diluted or lean mixtures

Methyl-cyclohexane oxidation

MCH

CO

CO2

C2H4 C3H6



Numerical simulations
q Number of variables limit detailed numerical solutions to a few simple 

laminar configurations
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Propagating laminar flame
} Governing Equations

} Type of information
◦  Laminar burning velocity

} Experimental configurations
◦ Combustion bomb



Chemical model reduction
q Chemical kinetic mechanism is a network, from which we want to 

extract the most important connections for some conditions of interest
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Chemical model reduction
q View reaction mechanism as kinetic network, well represented as a directed graph
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Chemical model reduction
q View reaction mechanism as kinetic network, well represented as a directed graph
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Chemical model reduction
q View reaction mechanism as kinetic network, well represented as a directed graph

27



Chemical model reduction
q View reaction mechanism as kinetic network, well represented as a directed graph
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Chemical model reduction
q View reaction mechanism as kinetic network, well represented as a directed graph
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Chemical model reduction
q View reaction mechanism as kinetic network, well represented as a directed graph
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Chemical model reduction
q View reaction mechanism as kinetic network, well represented as a directed graph
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Chemical model reduction
q View reaction mechanism as kinetic network, well represented as a directed graph
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Directed Relation Graph family of techniques
q Species reduction: Identify nodes to remove, along with their connections
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Directed Relation Graph family of techniques
q Species reduction: Identify nodes to remove, along with their connections
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Directed Relation Graph family of techniques
q Species reduction: Identify nodes to remove, along with their connections
q Reaction reduction: Identify edge contributions to remove
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Directed Relation Graph family of techniques
q Species reduction: Identify nodes to remove, along with their connections
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q Isomer Lumping: Merge nodes
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Directed Relation Graph family of techniques
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Directed Relation Graph family of techniques
q Species reduction: Identify nodes to remove, along with their connections
q Reaction reduction: Identify edge contributions to remove
q Isomer Lumping: Merge nodes
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Directed Relation Graph family of techniques
q Species reduction: Identify nodes to remove, along with their connections
q Reaction reduction: Identify edge contributions to remove
q Isomer Lumping: Merge nodes
q Path lumping: 

collapse entire 
sections of the 
network
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Directed Relation Graph family of techniques
q Species reduction: Identify nodes to remove, along with their connections
q Reaction reduction: Identify edge contributions to remove
q Isomer Lumping: Merge nodes
q Path lumping: 

collapse entire 
sections of the 
network
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q Species reduction: Identify nodes to remove, along with their connections
q Reaction reduction: Identify edge contributions to remove
q Isomer Lumping: Merge nodes
q Path lumping: 

collapse entire 
sections of the 
network

q QSS: replace species differential 
equations with algebraic ones

Directed Relation Graph family of techniques
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q Species reduction: Identify nodes to remove, along with their connections
q Reaction reduction: Identify edge contributions to remove
q Isomer Lumping: Merge nodes
q Path lumping: 

collapse entire 
sections of the 
network

q QSS: replace species differential 
equations with algebraic ones

q Projection/ML
techniques

Directed Relation Graph family of techniques
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Chemical model reduction
q Objective: simplify the coupled set of ODEs describing the temporal evolution of 

a spatially homogeneous mixture of chemical species or simple 1D flames
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Species 
elimination

Reaction
elimination

Dimension
reduction

Retains explicit 
format of detailed 
mechanism

Replace some ODEs 
by less costly alternative (e.g. 
algebraic equations)

Lumping

• Most efficient way to reduce model complexity
• Graph-based methods analyzing production rates ideally suited for 

very large mechanisms

Often overlooked, essential to facilitate further reduction

• Linear combination of some ODEs using chemical or 
mathematical arguments

• Critical to handle large numbers of isomers found in 
hydrocarbon combustion

QSSA, RCCE
ML



Example – Jet fuel surrogate
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Example – Jet fuel surrogate
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Example – Jet fuel surrogate
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Example with ML – SAF 

Ignition delay time well predicted with only 6 latent variables over a wide range of 
conditions compared to 152 species using the state-of-the-art skeletal reduction technique
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Chemical kinetics and CFD simulation of 
turbulent combustion

A good model is the simplest model that 
contains the physics we care about
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Numerical frameworks to simulate turbulence
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Numerical frameworks to simulate turbulence
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The issue of LES for turbulent combustion
q In LES, the Navier-Stokes equations are filtered: only the larger scales of 

the flow are resolved on the mesh
q Works great for non-reactive turbulence because in many cases, what 

happens at the small scales is universal 

q But combustion usually happens at the small scales, and it is definitely not 
universal (e.g. premixed vs non-premixed)

q Very large body of work to develop models to “close” the governing 
equations and properly account for the effect of the combustion (small 
scale) on the filtered quantities (large scale)

q Strong simplification assumption: e.g. eddy dissipation model 

q Conditional moment closure models: 
q Tabulation-based – e.g. FPV, FGM, FPI
q Monte-Carlo based 

q Thickened flame models

q …

51



Not all simulations need the details of the chemistry!

q In many industrial applications, only a few species are of interest and taking into 
account a large set of species is usually not needed. 

q Example: In gas turbines, a large part of the design process may just need :

q The chamber efficiency (which requires a correct prediction of fuel reaction rates), 
q The outlet temperature (which requires correct equilibrium computations
q CO composition at the chamber exit

q 2 or 3 step models are able to do that. 
q Ex: 2S_KERO_BFE 2 steps model

q Parameters fitted to capture flame speed, 
burnt gas temperature and ignition delays
at relevant conditions

q Fuel can be changed

52Franzelli et al. Combustion and Flame 157 (2010) 1364–1373



Not all simulations need the details of the chemistry!

q In many industrial applications, only a few species are of interest and taking into 
account a large set of species is usually not needed. 

q Example: In gas turbines, a large part of the design process may just need :

q The chamber efficiency (which requires a correct prediction of fuel reaction rates), 
q The outlet temperature (which requires correct equilibrium computations
q CO composition at the chamber exit

53B. Franzelli et al. / C. R. Mecanique 341 (2013) 247–256


