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Relevance, barriers and objective

o Modeling requirements:

• Correct prediction of multi-phase multi-modal combustion

• Prediction of soot

Relevance

o Wide range of SAF properties impact mixture preparation, combustion dynamics 

and emissions

o Predictive and computationally efficient models are required to test alternative 

fuels using CFD in order to reduce costs related to testing

o High fidelity direct numerical simulation (DNS) can shed light on complex 

combustion phenomenon and help improve combustion and turbulence models

o Soot emissions require further investigation in realistic configurations using 

state-of-the-art simulations

Barriers

o Accelerate the introduction of SAFs by leveraging DNS to improve turbulent combustion models

Objective



Motivation
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Heyne et al. (2018) AIAA SciTech

L
B

O
 s

en
si

ti
v
it

y

Relative LBO rig sensitivity to DCN for different combustors [2]

➢ Testing of SAFs require reliable and computationally efficient 
models

➢ Modeling requirements:
• Multi-modal combustion with lifted flame stabilization
• Extinction/reignition at adverse conditions
• Capture multi-component liquid evaporation
• Soot predictions at high pressure

➢ Near Blow-off behavior at adverse conditions for hard to ignite SAFs 
like ATJ (C1) compared to Jet-A

➢ In the scenario where SAFs are completely different than Jet-A: 
reliable and more general models are a requirement

➢ DNS can provide valuable information for understanding flame 
stabilization near lean blowoff and flamelet model development for 
mixed regime combustion



Outline of Part 3: SAF Combustion

• Flame Stabilization

• Backscatter
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Approach: DNS with complex geometry

Simulation based on Cambridge experiments
❖  Pele: an exascale-ready suite of AMR 

reactive flow solvers [1]:

o Low Mach number flows PeleLMeX

o Thermo-kinetic library PelePhysics

o Multiphysics library PeleMP

▪ Spray, soot and radiation

❖  Features:

• Adaptive Mesh Refinement (AMR)

• Support for modern heterogeneous 
exascale supercomputer

• Embedded boundaries for complex 
geometries

Experiment PeleLMeX computational domain

Targeted fuels 

• Jet-A: 58 species UIUC chemical mech. 

• C1: ~60 species UIUC chemical mech.Conditions:
o Bulk velocity as in El Helou et al (2023) Fuel: 16 m/s

o Swirl inflow velocity from auxiliary LES simulations
o Zero-mean vel. fluctuation added to inflow velocity:

• u’ = 0.1UB ; Lt = half-width of air passage
o Tu = 388 K and P = 1 atm

80 mm
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Soot model: Hybrid Method of Moments 

(HMOM) [2]

Soot precursor: Naphthalene (A2)
y

z

x

Instantaneous soot volume 
fraction and liquid phase 

measurement

Schematic of the burner 
geometry

[1] https://amrex-combustion.github.io/

[2] Mueller, M. E., Blanquart, G., and Pitsch, H., 2009, Combustion and Flame, 156

https://amrex-combustion.github.io/
https://amrex-combustion.github.io/
https://amrex-combustion.github.io/


High-fidelity Pele simulation of a lab-scale combustor with 
sustainable aviation fuels (C1 comparison with Jet-A)
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Cambridge swirl-stabilized spray flame

• El Helou et al (2023) Fuel 
https://doi.org/10.1016/j.fuel.2022.125608 

• Study soot formation: Jet-A and C5

PeleLMeX set up with AMR grid

Wall
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Wall Fluid

Inflow

Outflow

No slip wall

No slip wall

Wall

Wall

160 mm

80 m
m

B. Soriano, et al. 2023 (in prep)



DNS of swirl-stabilized spray flame with Alcohol-to-Jet, C1 sustainable 
aviation fuel (SAF) compared with Jet-A
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Complex flame behavior
• Diffusion flame
• Local extinction
• Edge flame propagation
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Instantaneous fields for Jet-A flame stabilization

Inner

shear 
layer

Central 

recirculation 
zone

Outer 

shear 
layer

Outer 

recirculation 
zone

Cambridge Burner (Panthania 2021, 2022; Helou et al. 2023)



Identification of combustion dynamics

Edge 

flame

Edge flame

Diffusion flame

Diffusion flameExtinction

Extinction

o DNS simulations provide detailed information on combustion dynamics

o Stabilization involves complex flame characteristics

• Diffusion flame

• Local extinction

• Edge flame propagation

Instantaneous heat release rate for Jet-A with different flame 

features identified. Stoichiometric mixture fraction iso-line in white

Karami et al. J.  Fluid Mech. (2015) 

Trailing 

diffusion 

flame

Leading premixed 

branch

Rich 

premixed 

branches

Lean 

premixed 

branches

• Iso-contours for 

products 

reaction rate 

• Lean/rich and 

leading 

premixed 

branches

• Trailing diffusion 

flame
Stoichiometric

mixture fraction

Edge flame example

Stoichiometric 

mixture 

fraction iso-line



Triple Flame Structure and Propagation

Karami et al. J.  Fluid Mech. (2015) 

Trailing 

diffusion 

flame

Leading premixed branch

Rich premixed 

branches

Lean premixed 

branches

• Iso-contours for 

products reaction rate 

• Lean/rich and leading 

premixed branches

• Trailing diffusion flame

Stoichiometric

mixture fraction

Kioni et al. 1993

Sd /SL = 
𝜌𝑢

𝜌𝑏

Ruetsch et al. 1995 

density ratio

triple flame speed
at stoichiometric
mixture fraction

laminar flame speed



Flame 
propagation into 
low Da number 

region

Quantification of ignition/deflagration for 
Jet-A and C1 
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Damköhler number can be used to quantify deflagration fronts

Damköhler number is 
typically around 31

• Deflagration and 
ignition fronts coexist!

• Ignition effects more 
pronounced for Jet-A

Da > 3  => ignition
Da < 3  => diffusion limit

Flame propagation into 
high Da number region

1C.S. Yoo et al. PROCI 34 (2013) 2985–2993 

Confirmation of 
low Da region

HRR = 2.e+9

Stoichiometric 
mixture fraction

Jet-A

C1

Inner shear layer Central recirculation near 
fuel injection



Quantification of combustion modes for Jet A and C1 
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𝐷𝑎 =
ሶ𝜔𝑘

| − ∇(𝜌𝑌𝑘𝑉𝑘)|

𝑌𝑐 ≡ Y𝐶𝑂2
+ 𝑌𝐶𝑂

Damköhler number can be used to quantify 
deflagration fronts

Damköhler number is 
typically around 31

Da > 3  => ignition
Da < 3  => deflagration

1C.S. Yoo et al. PROCI 34 (2013) 2985–2993 

Contribution of premixed and diffusion 
flames to the total HRR

𝑁𝐹𝐼 =
∇𝑌𝐹∇𝑌𝑂2

|∇𝑌𝐹∇𝑌𝑂2|

Normalized flame index (NFI):

𝑁𝐹𝐼 ≈ 1 : premixed
𝑁𝐹𝐼 ≈ −1 : non-premixed

 
𝑌𝐹  = C2H4



Instantaneous flame behavior for Jet-A and C1
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Jet-A

C1

Outer 
recirculation 
zone

Central 
recirculation 
zone

Fuel injection port

Air 
inflow

Air 
inflow

Outer shear 
layer Inner shear 

layer

Stoichiometric 
mixture fraction

(streamwise)



Flame stabilization dynamics: extinction/re-ignition in Jet-A

• Extinction regions show a high mixture 
fraction dissipation rate

• Edge flame propagation occurs into 
regions of partially reacted fuel: large 
CH2O upstream the edge flame

Flame propagation into partially 
reacted mixture



Edge flame speed (Sd, edge ) correlation with scalar dissipation rate

• Da number denotes flame propagation mode: Da > 3 ignition; Da < 3 deflagration
• Large Sd edge occurs at moderate dissipation as observed in literature

• Edge flame speed, Sd,edge ,  as a  function of scalar dissipation rate, colored by local Damkohler number (Da)

Jet-A C1

where k is the inner product of normal vectors of
 progress variable and mixture fraction isosurfaces



Conditional alignment (k) of stoichiometric mixture fraction and progress variable isosurfaces

• Mean alignment of Zstoich and Cedge isosurfaces (k) conditional on scalar dissipation rate and  Sd,edge

Jet-A C1

where k is the inner product of normal vectors of
 progress variable and mixture fraction isosurfaces
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Premixed mode dominates total HRR

Premixed flames have a higher contribution to the total 

Heat Release Rate

𝑁𝐹𝐼 =
𝛻𝑌𝐹𝛻𝑌𝑂2

|𝛻𝑌𝐹𝛻𝑌𝑂2|

Normalized flame index (NFI):

𝑁𝐹𝐼 ≈ 1 : premixed

𝑁𝐹𝐼 ≈ −1 : non-premixed

 

𝑌𝐹 = C2H4
• Premixed flames 

have a larger 
contribution to 
HRR

• Models should 
correctly predict 
multi-mode 
combustion

Analysis of the premixed flame: propagation into partially reacted mixture

• Three-dimensional edge flame 

propagation along the 

stoichiometric mixture fraction

• Edge flames propagate to re-

ignite extinction regions

• Propagation into a partially-

reacted mixture: C > 0; ~1000K

• Deflagration or ignition front?

Probability Density Function for the progress 

variable (C) in the extinction region
Soriano B. S., Owen L. , Esclapez L. and Chen J. 

AIAA 2024-1999. AIAA SCITECH 2024 Forum.

Extinction region

Stoichiometric mixture fraction iso-

surface colored by heat release rate

Contribution of combustion mode to total 

heat release rate
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Deflagration fronts reignite mixture

Contribution of propagation mode to total 

heat release rate

Contribution of propagation mode to the total heat release rate (HRR)

𝐷𝑎 =
ሶ𝜔𝑘

| − 𝛻(𝜌𝑌𝑘𝑉𝑘)|
𝑌𝑐 ≡ Y𝐶𝑂2

+ 𝑌𝐶𝑂 

(progress variable)

Damköhler number (Da) can be used to quantify deflagration/ignition fronts:

Deflagration fronts have a diffusion/reaction balance: typically around 31

Findings:

• Deflagration and ignition fronts coexist

• Deflagration is assisted by ignition

• Contribution of ignition/deflagration to total HRR is similar between Jet-A and C1 1C.S. Yoo et al. PROCI 34 (2013) 2985–2993 

Lean blow-off correlation with flame displacement speed

Probability density function of Sd,edge/SL for Jet-A and C1

Cetane number correlation with lean blow-off may be 

related to enhanced edge flame propagation speed for 

more reactive fuels

• Jet-A has a higher probability of larger Sd,edge/SL 

consistent  with a lower sensitivity to lean blow-off

B. S. Soriano, L. D. Owen, J. H. Chen, Fuel (2024) in preparation



Outline of Part 3: SAF Combustion

• Flame Stabilization

• Backscatter
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Turbulence back-scatter

Energy spectra for isotropic turbulence. 
Adapted from [1]

LES filter

Thermal 

thickness

LES turbulence models use the classical Richardson-Kolmogorov 

phenomenological model for constant density flows: forward energy 

cascade

Reacting flows can 

generate 

turbulence at sub-

grid scale

Reacting Non-Reacting

GA Tech swirl stabilized premixed burner

Instantaneous measurement of 

Forward/reverse energy transfer. 

Back-scatter is denoted in red [1] 

Flame 

location

Forward/reverse energy 
transfer parameter 

conditioned on progress 
variable [3]

Back-scatter

[1] A. Kazbekov, Inter-scale energy transfer in turbulent premixed 

combustion. PhD Thesis (2022)

[2] Kolla et al, On the velocity and reactive scalar spectra in turbulent 

premixed flames. JFM (2014)

[3] A. Kazbekov and A.M. Steinberg. Physical space analysis of cross-

scale turbulent kinetic energy transfer in premixed swirl flames. CNF 

(2021)

Fundamental question:

Do edge flames observed 

in the Cambridge burner 

DNS induce back-scatter?
DNS results for the energy spectra in a 

temporal H2 premixed flame [2]

Back-scatter
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o DNS solution is spatially filtered:

• Favre filtering operation on 3D field for multiple 

snapshots

• Top hat filter kernel

• Filter size: Δ = 2.2𝛿𝑡ℎ

o Analysis performed for Jet-A simulation

o Data presented in terms of conditional means as a function of 

progress variable for three equivalence ratio iso-surfaces

𝛼𝑠𝑓𝑠 = −
෤𝑢𝑖

ҧ𝜌

𝜕𝒯𝑖𝑗

𝜕𝑥𝑗

Forward-scatter

Back-scatter

Findings:

• Edge flames lead to an inversion of the turbulent kinetic energy 

cascade 

• Backscatter is more likely to occur near lean blow-off conditions

• The injection of energy at resolved scales: for 0.3 < c < 0.6

• Correlation between kinetic energy flux across the filter scale 𝛼𝑠𝑓𝑠 

and dilatation due to strong gas expansion caused by the flame

• Closure for LES turbulence models do not capture back-scatter 

present in extinction/reignition events

B. S. Soriano, J. H. Chen, Combustion and Flame (2025) in preparation

Conditional mean of kinetic energy flux across the 
filter scale as a function of progress variable (c) for 

different mixture fraction (Z)

Back-scatter from partially-premixed combustion

Conditional mean of dilatation as a function of 
progress variable (c) for different mixture fraction (Z)
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