Turbulent Combustion: A Computational Perspective Part 3. Sustainable Aviation Fuels

High-fidelity simulation of the Cambridge swirl-stabilized spray burner, B. Souza et al. (Combustion and Flame, 2025)

Relevance, barriers and objective

Relevance

- Wide range of SAF properties impact mixture preparation, combustion dynamics and emissions
- Predictive and computationally efficient models are required to test alternative fuels using CFD in order to reduce costs related to testing
- High fidelity direct numerical simulation (DNS) can shed light on complex combustion phenomenon and help improve combustion and turbulence models
- Soot emissions require further investigation in realistic configurations using state-of-the-art simulations

Barriers

- Modeling requirements:
 - Correct prediction of multi-phase multi-modal combustion
 - Prediction of soot

Objective

Accelerate the introduction of SAFs by leveraging DNS to improve turbulent combustion models

Motivation

- Testing of SAFs require reliable and computationally efficient models
- Modeling requirements:
 - Multi-modal combustion with lifted flame stabilization
 - Extinction/reignition at adverse conditions
 - Capture multi-component liquid evaporation
 - Soot predictions at high pressure
- ➤ Near Blow-off behavior at adverse conditions for hard to ignite SAFs like ATJ (C1) compared to Jet-A
- In the scenario where SAFs are completely different than Jet-A: reliable and more general models are a requirement
- DNS can provide valuable information for understanding flame stabilization near lean blowoff and flamelet model development for mixed regime combustion

Relative LBO rig sensitivity to DCN for different combustors [2]

Outline of Part 3: SAF Combustion

- Flame Stabilization
- Backscatter

Approach: DNS with complex geometry

Simulation based on Cambridge experiments

Schematic of the burner geometry

Instantaneous soot volume fraction and liquid phase measurement

Conditions:

- o Bulk velocity as in *El Helou et al (2023) Fuel*: 16 m/s
- Swirl inflow velocity from auxiliary LES simulations
- Zero-mean vel. fluctuation added to inflow velocity:
 - $u' = 0.1U_B$; $L_t = half-width of air passage$
- $\, \circ \, T_u = 388 \, \text{K} \text{ and } P = 1 \, \text{atm} \,$

- Pele: an exascale-ready suite of AMR reactive flow solvers [1]:
 - Low Mach number flows PeleLMeX
 - Thermo-kinetic library PelePhysics
 - Multiphysics library PeleMP
 - Spray, soot and radiation

Features:

- Adaptive Mesh Refinement (AMR)
- Support for modern heterogeneous exascale supercomputer
- Embedded boundaries for complex geometries

Targeted fuels

- Jet-A: 58 species UIUC chemical mech.
- C1: ~60 species UIUC chemical mech.

Soot model: Hybrid Method of Moments (HMOM) [2]

Soot precursor: Naphthalene (A2)

[2] Mueller, M. E., Blanquart, G., and Pitsch, H., 2009, Combustion and Flame, 156

High-fidelity Pele simulation of a lab-scale combustor with sustainable aviation fuels (C1 comparison with Jet-A)

Cambridge swirl-stabilized spray flame

- El Helou et al (2023) Fuel https://doi.org/10.1016/j.fuel.2022.125608
- Study soot formation: Jet-A and C5

- Embedded boundary treatment
- 4 AMR levels (base + 3 levels): dx = 78 μm. Number of cells: approx. 350M

Targeted fuels

- Jet-A: 48-species UIUC mech (Ryu et al. 2021)
- C1: 57-species UIUC mech (Kim et al. 2021)

B. Soriano, et al. 2023 (in prep)

DNS of swirl-stabilized spray flame with Alcohol-to-Jet, C1 sustainable aviation fuel (SAF) compared with Jet-A

Complex flame behavior

- Diffusion flame
- Local extinction
- Edge flame propagation

Instantaneous fields for Jet-A flame stabilization

Identification of combustion dynamics

- DNS simulations provide detailed information on combustion dynamics
- Stabilization involves complex flame characteristics

- Local extinction
- Edge flame propagation

1.5 -

Edge flame example

Instantaneous heat release rate for Jet-A with different flame features identified. Stoichiometric mixture fraction iso-line in white

Triple Flame Structure and Propagation

Kioni et al. 1993

- Iso-contours for products reaction rate
- Lean/rich and leading premixed branches
- Trailing diffusion flame

$$S_d/S_L = \sqrt{\frac{\rho_u}{\rho_b}}$$
 triple flame speed at stoichiometric mixture fraction Ruetsch et al. 1995

0

Quantification of ignition/deflagration for Jet-A and C1

Damköhler number can be used to quantify deflagration fronts

$$Y_c \equiv Y_{CO_2} + Y_{CO}$$

Damköhler number is typically around 3¹

$$Da > 3 =$$
 ignition

Da < 3 => diffusion limit

- Deflagration and ignition fronts coexist!
- Ignition effects more pronounced for Jet-A

10

Quantification of combustion modes for Jet A and C1

Damköhler number can be used to quantify deflagration fronts

$$Da = \frac{\dot{\omega}_k}{|-\nabla(\rho Y_k V_k)|}$$
 Damköhler number is typically around 3¹

$$Y_C \equiv Y_{CO_2} + Y_{CO}$$

 $Y_C \equiv Y_{CO_2} + Y_{CO}$ Da > 3 => ignition Da < 3 => deflagration

Contribution of premixed and diffusion flames to the total HRR

Normalized flame index (NFI):

$$NFI = rac{
abla Y_F
abla Y_{O2}}{|
abla Y_F
abla Y_{O2}|} \quad \begin{array}{ll} NFI \approx 1 : \text{premixed} \\ NFI \approx -1 : \text{non-premixed} \end{array}$$

$$Y_F = C2H4$$

¹C.S. Yoo et al. PROCI 34 (2013) 2985–2993

Instantaneous flame behavior for Jet-A and C1

Flame stabilization dynamics: extinction/re-ignition in Jet-A

Extinction regions show a high mixture fraction dissipation rate

 Edge flame propagation occurs into regions of partially reacted fuel: large CH2O upstream the edge flame

reacted mixture

Edge flame speed ($S_{d, edge}$) correlation with scalar dissipation rate

$$S_d = \frac{1}{\rho |\nabla c|} \frac{D\rho c}{Dt} \qquad S_Z = \frac{1}{\rho |\nabla Z|} \left(-\frac{\partial}{\partial x_i} \left(D_Z \frac{\partial Z}{\partial x_i} \right) \right)$$
 where k is the inner product of normal vectors of progress variable and mixture fraction isosurfaces
$$S_{d,edge} = \frac{S_d - kS_Z}{\sqrt{1 - k^2}}$$
 of the inner product of normal vectors of progress variable and mixture fraction isosurfaces
$$C1 = \frac{6.0e + 00}{4.5e + 00}$$

$$3.0e + 00 \frac{e}{O}$$

$$3.0e + 00 \frac{e}{O}$$

$$1.5e + 00$$

$$0.0e + 00$$

$$S_{d,edge}/S_L$$

$$S_{d,edge}/S_L$$

- Edge flame speed, $S_{d,edge}$, as a function of scalar dissipation rate, colored by local Damkohler number (Da)
- Da number denotes flame propagation mode: Da > 3 ignition; Da < 3 deflagration
- Large S_{d edge} occurs at moderate dissipation as observed in literature

Conditional alignment (k) of stoichiometric mixture fraction and progress variable isosurfaces

$$S_d = \frac{1}{\rho |\nabla c|} \frac{D\rho c}{Dt} \qquad S_Z = \frac{1}{\rho |\nabla Z|} \left(-\frac{\partial}{\partial x_i} \left(D_Z \frac{\partial Z}{\partial x_i} \right) \right)$$
 where k is the inner product of normal vectors of progress variable and mixture fraction isosurfaces
$$S_{d,edge} = \frac{S_d - kS_Z}{\sqrt{1-k^2}}$$
 C1

• Mean alignment of Z_{stoich} and C_{edge} isosurfaces (k) conditional on scalar dissipation rate and $S_{d,edge}$

Premixed mode dominates total HRR

Premixed flames have a higher contribution to the total Heat Release Rate

Normalized flame index (NFI):

$$NFI = rac{
abla Y_F
abla Y_{O2}}{|
abla Y_F
abla Y_{O2}|} \qquad egin{array}{ll} NFI &pprox 1 : premixed \\ NFI &pprox -1 : non-premixed \end{array}$$

- Premixed flames have a larger contribution to HRR
- Models should correctly predict multi-mode

Contribution of combustion mode to total combustion heat release rate

Analysis of the premixed flame: propagation into partially reacted mixture

Stoichiometric mixture fraction isosurface colored by heat release rate

- Three-dimensional edge flame propagation along the stoichiometric mixture fraction
- Edge flames propagate to reignite extinction regions
- Propagation into a partiallyreacted mixture: C > 0; ~1000K
- Deflagration or ignition front?

Probability Density Function for the progress variable (C) in the extinction region

Deflagration fronts reignite mixture

Contribution of propagation mode to the total heat release rate (HRR)

Damköhler number (Da) can be used to quantify deflagration/ignition fronts:

$$Da = \frac{\dot{\omega}_k}{|-\nabla(\rho Y_k V_k)|}$$
 $Y_c \equiv Y_{CO_2} + Y_{CO}$ (progress variable)

$$Y_c \equiv Y_{CO_2} + Y_{CO}$$
 (progress variable)

Deflagration fronts have a diffusion/reaction balance: typically around 3¹

Findings:

- Deflagration and ignition fronts coexist
- Deflagration is assisted by ignition
- Contribution of ignition/deflagration to total HRR is similar between Jet-A and C1

Contribution of propagation mode to total heat release rate

¹C.S. Yoo et al. PROCI 34 (2013) 2985-2993

Lean blow-off correlation with flame displacement speed

Cetane number correlation with lean blow-off may be related to enhanced edge flame propagation speed for more reactive fuels

Jet-A has a higher probability of larger S_{d,edge}/S_L consistent with a lower sensitivity to lean blow-off

Outline of Part 3: SAF Combustion

- Flame Stabilization
- Backscatter

Turbulence back-scatter

LES turbulence models use the classical Richardson-Kolmogorov phenomenological model for constant density flows: forward energy cascade

Thermal

LES filter Inertial Subrange

Reacting flows can generate turbulence at subgrid scale

GA Tectors

Containing Scales

Dissipation Scales

CA Tectors

Dissipation Scales

 $\ln E(k)$

Fundamental question:
Do edge flames observed
in the Cambridge burner
DNS induce back-scatter?

DNS results for the energy spectra in a temporal H₂ premixed flame [2]

GA Tech swirl stabilized premixed burner

Instantaneous measurement of Forward/reverse energy transfer. Back-scatter is denoted in red [1]

Forward/reverse energy transfer parameter conditioned on progress variable [3]

Energy spectra for isotropic turbulence. Adapted from [1]

[1] A. Kazbekov, *Inter-scale energy transfer in turbulent premixed combustion*. PhD Thesis (2022)

 $\ln k$

- [2] Kolla et al, On the velocity and reactive scalar spectra in turbulent premixed flames. JFM (2014)
- [3] A. Kazbekov and A.M. Steinberg. *Physical space analysis of cross-scale turbulent kinetic energy transfer in premixed swirl flames.* CNF (2021)

Back-scatter from partially-premixed combustion

- DNS solution is spatially filtered:
 - Favre filtering operation on 3D field for multiple snapshots
 - Top hat filter kernel
 - Filter size: $\Delta = 2.2\delta_{th}$
- Analysis performed for Jet-A simulation
- Data presented in terms of conditional means as a function of progress variable for three equivalence ratio iso-surfaces

Findings:

- Edge flames lead to an <u>inversion of the turbulent kinetic energy</u> <u>cascade</u>
- Backscatter is more likely to occur near lean blow-off conditions
- The injection of energy at resolved scales: for 0.3 < c < 0.6
- Correlation between kinetic energy flux across the filter scale α_{sfs} and dilatation due to strong gas expansion caused by the flame
- Closure for LES turbulence models do not capture back-scatter present in extinction/reignition events

Conditional mean of kinetic energy flux across the filter scale as a function of progress variable (c) for different mixture fraction (Z)

Conditional mean of dilatation as a function of progress variable (c) for different mixture fraction (Z)

